Glucose is a significant energy resource for maintaining physiological activities, including body temperature homeostasis, and glucose homeostasis is tightly regulated in mammals. Although ambient temperature tunes glucose metabolism to maintain euthermia, the significance of body temperature in metabolic regulation remains unclear owing to strict thermoregulation. Activation of Qrfp neurons in the preoptic area induced a harmless hypothermic state known as Q-neuron-induced hypothermia and hypometabolism (QIH), which is suitable for studying glucose metabolism under hypothermia. In this study, we observed that QIH mice had hyperinsulinemia and insulin resistance. This glucose hypometabolic state was abolished by increasing the body temperature to euthermia. Moreover, QIH-mediated inappetence and locomotor inactivity were recovered in euthermia QIH mice. These results indicate that body temperature is considerably more powerful than ambient temperature in regulating glucose metabolism and behavior, and the glucose hypometabolism in QIH is secondary to hypothermia rather than modulated by Qrfp neurons.
Body temperature regulates glucose metabolism and torpid behavior.
体温调节葡萄糖代谢和蛰伏行为
阅读:7
作者:Lee Ming-Liang, Chang Ching-Pu, Toda Chitoku, Nemoto Tomomi, Enoki Ryosuke
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 16(1):6278 |
| doi: | 10.1038/s41467-025-61499-2 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
