Characterizing the tumor suppressor activity of FLCN in Birt-Hogg-Dubé syndrome cell models through transcriptomic and proteomic analysis.

通过转录组学和蛋白质组学分析表征 FLCN 在 Birt-Hogg-Dubé 综合征细胞模型中的抑癌活性

阅读:5
作者:Jones Rachel-Ann, Dunlop Elaine A, Champion Jesse D, Doubleday Peter F, Claessens Tijs, Jalali Zahra, Seifan Sara, Perry Iain A, Giles Peter, Harrison Oliver, Coull Barry J, Houweling Arjan C, Pause Arnim, Ballif Bryan A, Tee Andrew R
Birt-Hogg-Dubé syndrome (BHD) patients are uniquely susceptible to all renal tumor subtypes. However, the underlying mechanism of carcinogenesis is unclear. To study cancer development in BHD, we used human proximal kidney (HK2) cells and found that long-term folliculin (FLCN) knockdown was required to increase the tumorigenic potential of these cells, as evidenced by the formation of larger spheroids under nonadherent conditions. Transcriptomic and proteomic analyses revealed links between the FLCN, cell cycle control and DNA damage response (DDR) machinery. In addition, HK2 cells lacking FLCN had an altered transcriptome profile and enriched cell cycle control genes. G(1)/S cell cycle checkpoint signaling was compromised by increased protein levels of cyclin D1 (CCND1) and hyperphosphorylation of retinoblastoma 1 (RB1). A FLCN interactome screen revealed that FLCN binds to DNA-dependent protein kinase (DNA-PK). This novel interaction was reversed in an irradiation-responsive manner. Knockdown of FLCN in HK2 cells caused a marked increase in γH2AX and RB1 phosphorylation. The levels of both CCND1 and phosphorylated RB1 remained high during DNA damage, which was associated with defective cell cycle control caused by FLCN knockdown. Furthermore, Flcn-knockdown C. elegans were defective in cell cycle arrest caused by DNA damage. This work revealed that long-term FLCN loss and associated cell cycle defects in BHD patients could contribute to their increased risk of cancer.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。