Sequential Contrastive and Deep Learning Models to Identify Selective Butyrylcholinesterase Inhibitors.

序列对比和深度学习模型用于识别选择性丁酰胆碱酯酶抑制剂

阅读:5
作者:Ozalp Mustafa Kemal, Vignaux Patricia A, Puhl Ana C, Lane Thomas R, Urbina Fabio, Ekins Sean
Butyrylcholinesterase (BChE) is a target of interest in late-stage Alzheimer's Disease (AD) where selective BChE inhibitors (BIs) may offer symptomatic treatment without the harsh side effects of acetylcholinesterase (AChE) inhibitors. In this study, we explore multiple machine learning strategies to identify BIs in silico, optimizing for precision over all other metrics. We compare state-of-the-art supervised contrastive learning (CL) with deep learning (DL) and Random Forest (RF) machine learning, across single and sequential modeling configurations, to identify the best models for BChE selectivity. We used these models to virtually screen a vendor library of 5 million compounds for BIs and tested 20 of these compounds in vitro. Seven of the 20 compounds displayed selectivity for BChE over AChE, reflecting a hit rate of 35% for our model predictions, suggesting a highly efficient strategy for modeling selective inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。