This study aimed to explore how amelogenin can improve stem cells from human exfoliated deciduous teeth (SHED)-based bone regeneration and promote tissue healing as a treatment for critical-sized bone defects. SHED was induced into bone differentiation by using osteogenic differentiation medium. Real-time polymerase chain reaction, alkaline phosphatase (ALP) staining and quantification, and Alizarin Red S staining, as well as calcium and osteocalcin quantification were performed to assess differentiation. On day 18, a significant increase was observed in the expression of RUNX2, CBFB, BGLAP, COL1, BMP2, BMP4, NOTCH1, NOTCH2, and NES. Osteocalcin gene expression continued to increase significantly. ALP activity was significantly higher in the amelogenin-treated group than in the control group on days 7, 10, and 14. On day 14, enhanced ALP staining was observed in the amelogenin-treated group. Calcium and osteocalcin levels were significantly higher in the amelogenin-treated group than in the control group on day 21. This study suggests that combining SHED and amelogenin may be effective for bone regeneration, offering a potential new approach in regenerative medicine.
Effect of Recombinant Human Amelogenin on the Osteogenic Differentiation Potential of SHED.
重组人釉原蛋白对SHED成骨分化潜能的影响
阅读:5
作者:Hirabae Akira, Kunimatsu Ryo, Yoshimi Yuki, Rikitake Kodai, Ogashira Shintaro, Nakatani Ayaka, Sakata Shuzo, Tanimoto Kotaro
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 30; 14(9):657 |
| doi: | 10.3390/cells14090657 | 种属: | Human |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
