Hippo Signaling Is Essential for the Maintenance of Zona Glomerulosa Cell Fate in the Murine Adrenal Cortex.

Hippo信号通路对于维持小鼠肾上腺皮质球状带细胞的命运至关重要

阅读:6
作者:Abou Nader Nour, Jakuc Natalia, Meinsohn Marie-Charlotte, Charrier Laureline, Banville Laurence, Brind'Amour Julie, Paquet Marilène, St-Jean Guillaume, Boerboom Derek, Mao Junhao, Pépin David, Breault David T, Zamberlam Gustavo, Boyer Alexandre
Cells of the zona glomerulosa (zG), the outermost zone of the adrenal cortex, secrete aldosterone and transdifferentiate into glucocorticoid-producing cells of the zona fasciculata (zF) during adrenal homeostasis. However, our understanding of the signaling pathways mediating zG cell maintenance or their transdifferentiation into zF cells is incomplete. Hippo is a major pathway that regulates cell proliferation/differentiation during embryogenesis and postnatal tissue homeostasis. Hypothesizing that Hippo signaling could be involved in zG cell maintenance or transdifferentiation, we generated a mouse model in which the two main kinases of the Hippo signaling cascade large tumor suppressor homolog kinases 1/2 (Lats1 and Lats2) are specifically inactivated in zG cells. Here we show that loss of function of Lats1 and Lats2 impairs zG steroidogenesis and leads to zG cell transdifferentiation into cells sharing characteristics with chondroblasts/osteoblasts rather than zF cells. Furthermore, we demonstrate that this phenotype can be rescued by the concomitant inactivation of the transcriptional coactivators Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) with Lats1 and Lats2. Finally, we show that expression of a constitutively active form of YAP (YAP5SA) in zG cells does not alter their fate as severely as the loss of Lats1 and Lats2 but leads to adrenal hyperplasia. Together, these findings highlight the critical role of Hippo signaling in maintaining zG cell fate and function and provide key insights into broader mechanisms underlying cellular differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。