M6A-modified BFSP1 induces aerobic glycolysis to promote liver cancer growth and metastasis through upregulating tropomodulin 4.

M6A修饰的BFSP1通过上调tropomodulin 4诱导有氧糖酵解,从而促进肝癌的生长和转移

阅读:17
作者:Li Rong, Li Shunle, Shen Lin, Li Junhui, Zhang Di, Yu Jinmin, Huang Lanxuan, Liu Na, Lu Hongwei, Xu Meng
RNA N6-methyladenosine (m6A) is a common RNA modification in eukaryotes, and its abnormal regulation is closely related to cancer progression. Aerobic glycolysis is a main way for cancer cells to obtain energy. It was found that beaded filament structural protein 1 (BFSP1) is a m6A related gene in liver cancer. However, the effect of m6A-modified BFSP1 on aerobic glycolysis and how it is regulated in liver cancer progression have not been explored. Here, we found that BFSP1 was upregulated in liver cancer cells and tissues. Overexpression of BFSP1 promoted the viability, invasion, and aerobic glycolysis of liver cancer cells, whereas knockdown of BFSP1 showed the opposite effects. Co-immunoprecipitation, immunofluorescence and GST pull down analyses showed that BFSP1 directly interacted with tropomodalin 4 (TMOD4), and knockdown of TMOD4 reversed BFSP1 overexpression-induced malignant phenotypes and aerobic glycolysis in liver cancer cells. Moreover, methyltransferase-like 3 (METTL3) enhanced BFSP1 stability by augmenting m6A modification of BFSP1 mRNA, which is achieved in a YTHDF1-dependent manner. In vivo experiments in mice confirmed that METTL3 increased BFSP1 stability by promoting m6A modification of BFSP1 mRNA, and knockdown of BFSP1 inhibited tumor growth and metastasis. In summary, METTL3-mediated m6A methylation of BFSP1 mRNA plays an important role in the aerobic glycolysis and progression of liver cancer, providing a potential therapeutic strategy for liver cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。