Messenger RNA (mRNA) vaccines against COVID-19 have demonstrated high efficacy and rapid deployment capability to target emerging infectious diseases. However, the need for ultra-low temperature storage made the distribution of LNP/mRNA vaccines to regions with limited resources impractical. This study explores the use of lyophilization to enhance the stability of self-replicating mRNA (repRNA) vaccines, allowing for their storage at non-freezing temperatures such as 2-8 °C or room temperature (25 °C). We lyophilized repRNA molecules complexed to a novel cationic emulsion delivery system, LIONâ¢, with different sugar-based lyoprotectants to identify candidates that provided the best vaccine integrity and effectiveness after being thermally stressed. For screening, we used repRNA encoding the reporter protein secreted embryonic alkaline phosphatase (SEAP) and for proof-of-concept, we used repRNA vaccines encoding SARS-CoV-2 full-length spike (WA-1 isolate) or full-length surface protein circumsporozoite (CS) of Plasmodium yoelii (Py). We found that lyophilization of LION/repRNA with sucrose provided the best colloidal stability, preserved in vitro expression, and induced equivalent antigen-specific antibody responses in mice compared to freshly prepared liquid LION/repRNA. Furthermore, lyophilized vaccines were stable for at least one week at 25 °C and at least one year at 2-8 °C. The cumulative analysis of stability-determining physicochemical data, in vitro potency, and in vivo immunogenicity in mice enabled the selection of a lead lyophilized composition containing 10 % w/v sucrose as the lyoprotectant. The data presented here provide a foundation for the clinical evaluation of next-generation thermostable repRNA vaccines that will enable more equitable vaccine access globally.
Preclinical development of lyophilized self-replicating RNA vaccines for COVID-19 and malaria with improved long-term thermostability.
具有改进的长期热稳定性的冻干自复制RNA疫苗用于COVID-19和疟疾的临床前开发
阅读:20
作者:Gulati Gaurav K, Simpson Adrian C, MacMillen Zachary, Krieger Kyle, Sharma Shibbu, Erasmus Jesse H, Reed Steven G, Davie James W, Avril Marion, Khandhar Amit P
| 期刊: | Journal of Controlled Release | 影响因子: | 11.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 10; 377:81-92 |
| doi: | 10.1016/j.jconrel.2024.11.023 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
