A tailored 4G s-triazine-based dendrimer vehicle for quercetin endowed with MMP-2/9 inhibition and VEGF downregulation for targeting breast cancer progression and liver metastasis.

一种定制的基于 4G s-三嗪的树状聚合物载体,用于槲皮素,具有 MMP-2/9 抑制和 VEGF 下调作用,可靶向治疗乳腺癌进展和肝转移

阅读:10
作者:Ramadan Doaa R, Osman Heba A, Madhy Somaya Aly, Teleb Mohamed, Darwish A I, Abu-Serie Marwa M, Haiba Nesreen S, Khattab Sherine N, Khalil Hosam H
Motivated by our recent research progress on the exploitation of s-triazine dendritic platforms as bioactive carriers for well-known anticancer agents and/or targeting ligands, we set out to synthesize new rationally designed dendrimers endowed with MMP-2/9 inhibition potential for halting both breast and liver cancer progression with reduced off-target side effects. New three and four generation s-triazine based dendrimers were developed to incorporate potential ZBGs (Zinc Binding Groups) and carboxyl terminal groups to facilitate direct conjugation of anti-cancer drugs (quercetin) and/or targeting ligands (lactobionic acid) through a biodegradable ester bond. Compared to free quercetin (QUR), MTT assay revealed that all the quercetin-coupled dendrimers displayed better anticancer potential (IC(50) = 12.690-29.316, 4.137-29.090 μM) against MCF-7 and HepG-2 cancer cells, respectively within their safe doses (EC(100) = 134.35-78.44 μM). Conjugation of lactobionic acid and PEG boosted the anticancer potency against both treated cells, improved apoptosis and down regulated MMP-9 and VEGF gene expression levels in both treated cancer cells. Generally, the more branched G4 dendrimer conjugates exhibited a superior overall anticancer performance compared to their respective G3 analogues, except for their MMP-9 inhibition where G3 conjugate appeared to be more potent and more selective than its G4 analogue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。