Myokines are secreted by muscle and play crucial roles in muscle repair and regeneration and also impact diverse physiological effects through crosstalk with other metabolic organs. However, aging is associated with a progressive decline in muscle mass, which in turn leads to reduced myokine secretion. This decline may contribute to the development of sarcopenia, leading to an increased risk of metabolic disorders such as type 2 diabetes. Accordingly, interest in identifying novel myokines and elucidating their biological functions is increasing. In this study, we explored the function of biglycan (BGN), a novel myokine, in aging-related metabolic tissues. BGN levels decreased in the muscle tissue and plasma of older adults and aged mice, whereas exercise intervention restored BGN expression in aged mice. BGN counteracted the expression of atrophy-related genes involved in muscle degradation and mitigated muscle mass loss by regulating AKT/mTOR signaling pathway. Notably, BGN decreased the expression of the senescence marker p21 and senescence-associated secretory phenotype (SASP)-related genes in hepatocytes. Additionally, BGN attenuated senescence-induced lipid accumulation and ROS generation. Our results suggest that BGN has beneficial effects against muscle atrophy and hepatocellular senescence, indicating its potential as a protective factor for age-related diseases.
Biglycan Alleviates Age-Related Muscle Atrophy and Hepatocellular Senescence.
Biglycan 可缓解与年龄相关的肌肉萎缩和肝细胞衰老
阅读:4
作者:Lee Da Som, Lim Joo Hyun, Lee Yoo Jeong
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 26; 26(17):8286 |
| doi: | 10.3390/ijms26178286 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
