OBJECTIVES: Chebulagic acid (CA), isolated from the fruits of Terminalia chebula Retz, has a number of pharmacological activities, but its effect on ulcerative colitis (UC) has not been reported. Here, we explored the protective effect of CA against dextran sulfate sodium (DSS)-induced acute colitis and elucidated the potential mechanisms. METHODS: The mouse model of DSS-induced acute colitis was employed to evaluate the effect of CA on UC. The expression of pro-inflammatory cytokines and tight junction proteins were evaluated by quantitative real-time PCR (qRT-PCR). Western blotting was used to explore the potential signal pathway. The gut microbiota was analyzed by 16S rDNA amplicon sequencing. RESULTS: The data showed that CA significantly mitigated colitis severity, as manifested by the suppression of weight loss, shortening of colon, disease activity index (DAI) and histopathological score. CA increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and reduced malondialdehyde (MDA) content in the colon of colitis mice through inhibiting the mitogen-activated protein kinase (MAPK) pathway and the activating nuclear respiratoty factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway. Meanwhile, myeloperoxidase (MPO) activity and proinflammatory cytokines levels of the CA group were markedly decreased due to suppression of the nuclear factor kappa-B (NF-κB) signaling pathway. Moreover, CA could upregulate the expression of tight junction proteins and reduced apoptosis. Furthermore, CA remodeled the gut microbiota through suppressing the growth of harmful bacteria (Clostridium_sensu_stricto_1, Streptococcus and Escherichia_Shigella) and promoting the growth of beneficial bacteria (Faecalibacterium, Dubosiella and Muribaculaceae). CONCLUSIONS: This study revealed that CA treatment could ameliorate DSS-induced acute colitis mainly via reducing oxidative stress and inflammation, maintaining the integrity of the intestinal barrier and modulating diversity and abundance of gut microbiota; thus, CA may become a promising novel drug candidate for initial and maintenance therapy of UC.
Chebulagic acid ameliorates DSS-induced colitis in mice by improving oxidative stress, inflammation and the gut microbiota.
诃子酸通过改善氧化应激、炎症和肠道菌群来缓解DSS诱导的小鼠结肠炎
阅读:13
作者:Zhang Song, Ren Yali, Li Min, Gao Xin, Zhang Xiao, Xu Weitian, Lu Qiping
| 期刊: | American Journal of Translational Research | 影响因子: | 1.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 15; 17(6):4101-4118 |
| doi: | 10.62347/QWCQ2468 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
