7‑Difluoromethoxyl‑5,4'‑di‑n‑octylygenistein targets the STAT3 pathway by upregulating microRNA‑152‑3p expression to inhibit self‑renewal and tumor growth in non‑small cell lung carcinoma.

7'二氟甲氧基-5,4'二辛基染料木素通过上调microRNA'152'3p表达来靶向STAT3通路,从而抑制非小细胞肺癌的自我更新和肿瘤生长

阅读:9
作者:Yuan Qing, Li Xiang, Chen Xuemei, Xiao Jianhui, Zhang Jiansong
MicroRNAs (miRs) serve a pivotal role in the regulation of non‑small cell lung carcinoma (NSCLC). The present study aimed to investigate the antitumor effects of 7‑difluoromethoxyl‑5,4'‑di‑n‑octylygenistein (DFOG), a novel synthetic genistein derivative, on NSCLC, and to elucidate its molecular mechanism. The research focused on whether DFOG inhibited self‑renewal and tumor growth in NSCLC by modulating the miR‑152‑3p/STAT3 signaling pathway. Reverse transcription‑quantitative PCR and western blot analyses were employed to assess miR‑152‑3p expression and phosphorylated‑STAT3 (p‑STAT3) levels. The effects of DFOG on self‑renewal and tumor growth were evaluated via sphere formation and clonogenic assays. Additionally, sphere‑forming cells (SFCs) were enriched using a suspension culture method, and western blot analysis was conducted to examine stemness markers (CD133, CD44, Oct4 and Sox2). The results demonstrated that DFOG inhibited self‑renewal and tumor growth in NSCLC. This effect was associated with increased miR‑152‑3p expression, decreased STAT3 mRNA levels and reduced p‑STAT3 levels in NSCLC cells. Furthermore, inhibition or overexpression of STAT3 did not alter miR‑152‑3p expression but modulated the inhibitory effects of DFOG on self‑renewal and tumor growth. These findings highlighted that DFOG suppressed self‑renewal and tumor growth in SFCs derived from NSCLC by directly targeting STAT3 through the upregulation of miR‑152‑3p.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。