HELLS controls mitochondrial dynamics and genome stability in liver cancer by collusion with MIEF1.

HELLS 通过与 MIEF1 协同作用控制肝癌中的线粒体动力学和基因组稳定性

阅读:11
作者:Choi Sung Kyung, Park Jihye, Ha Sang Yun, Kim Myoung Jun, Ahn Seor I, Kim Jeongah, Sun Woong, Park Yeong Min, Nam Suk Woo, Han Jeung-Whan, Kang Keunsoo, You Jueng Soo
Dysregulated chromatin remodelers have emerged as critical disease targets. However, owing to the pleiotropic functions of chromatin remodelers, the underlying mechanisms of their effects on cancer have been difficult to elucidate. Here, we investigated the helicase lymphoid-specific (HELLS) oncogenic mechanism by identifying a new direct transcriptional target. Using loss or gain experiments, we identified Mitochondrial elongation factor 1 (MIEF1) as a critical target of the HELLS molecular network in liver cancer. Liver cancer patients with a poor prognosis exhibited upregulated expression of MIEF1, and MIEF1 knockdown led to the loss of tumor capabilities, indicating MIEF1 as an oncogene in liver cancer. Suppressing the HELLS-MIEF1 axis caused mitochondrial hyperfusion, energy deprivation, and further resulting senescence. HELLS knockdown globally increased histone 3 lysine 9 trimethylation (H3K9me3), especially in genomic hotspots with upregulation of SUV39H1 and further augmented DNA methylation. This stabilized genome and hyperfused mitochondria led to reduced levels of reactive oxygen species (ROS) and DNA damage. Finally, tumor cells became famished and calm. We further validated the functions of the HELLS-MIEF1 axis by MIEF1 overexpression and mitochondrial fusion drug. Our study has important implications for medical science by highlighting the crosstalk between epigenetics and metabolism through nuclear chromatin remodeler HELLS and mitochondrial protein MIEF1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。