Failed cellular surveillance enables pathogenic matrix deposition in a COL2A1-related osteoarthritis.

细胞监视功能障碍导致致病性基质沉积,从而引发 COL2A1 相关骨关节炎

阅读:14
作者:Yammine Kathryn M, Mirda Abularach Sophia, Xiong Michael, Kim Seo-Yeon, Bikovtseva Agata A, Butty Vincent L, Schiavoni Richard P, Bateman John F, Lamandé Shireen R, Shoulders Matthew D
Mutations in the COL2A1 gene, encoding procollagen-II, cause various chondrodysplasias, including precocious osteoarthritis with mild spondyloepiphyseal dysplasia engendered by the p.Arg719Cys substitution. The molecular mechanisms underlying these disorders remain incompletely understood, largely owing to the absence of models faithfully recapitulating the human disease. Here, we developed an in vitro human cartilage model using isogenic induced pluripotent stem cell (iPSC) lines carrying either wild-type or Arg719Cys COL2A1. Directed differentiation into chondrocytes yielded cartilage tissues that were analyzed by immunohistochemistry, electron microscopy, SDS-PAGE, and RNA-sequencing. Tissues derived from Arg719Cys heterozygotes displayed a deficient matrix, closely reflecting the human disease phenotype. Arg719Cys procollagen-II was excessively post-translationally modified and partially retained within the endoplasmic reticulum (ER), leading to ER distention. Notably, despite introduction of an aberrant cysteine residue-expected to engage redox-sensitive folding and quality control pathways-Arg719Cys procollagen-II was not detectably recognized by the ER proteostasis network. The resulting inability to mount a quality control response, including absent activation of the unfolded protein response, indicates a failure in cellular surveillance. As a result, malformed procollagen-II both accumulates intracellularly and is secreted, contributing to the deposition of a structurally compromised extracellular matrix that drives disease pathology. The iPSC-derived cartilage model presented here provides a genetically defined, expandable, and human-based system for dissecting mechanisms of failed proteostasis in collagenopathies. These findings shed light on the types of substitutions in procollagen that cells do or do not recognize, and underscore the therapeutic potential of targeting cellular surveillance and collagen quality control pathways in COL2A1-related disorders and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。