Papain Affects the Percentage and Morphology of Microglia in Hippocampal Neuron-Glial Cultures.

木瓜蛋白酶影响海马神经元-胶质细胞培养物中小胶质细胞的百分比和形态

阅读:4
作者:Tumozov Ivan A, Mal'tseva Valentina N, Maiorov Sergei A, Kosenkov Artem M, Gaidin Sergei G
Background. Microglia, accounting for 5-15% of total brain cells, represent an essential population of glial cells in the cultures used for modeling neuroinflammation in vitro. However, microglia proliferation is poor in neuron-glial cultures. Here, we studied the population composition of rat hippocampal neuron-glial cell cultures prepared utilizing papain (PAP cultures) and trypsin (TRY cultures) as proteolytic enzymes for cell isolation. Methods. To evaluate the percentage and morphology of microglia in TRY and PAP cultures and cultures incubated in the presence of TGFβ+MCSF+cholesterol, which should enhance microglia proliferation, we used an immunostaining and calcium imaging approach in combination with staining using the recently developed vital microglia fluorescent probe CDr20. Results. We have shown that the microglia percentage in PAP cultures was higher than in TRY cultures. Microglia in PAP cultures are predominantly polarized, while bushy morphology was more characteristic of TRY cultures. We have also demonstrated that the TGFβ+MCSF+cholesterol combination increases the microglia number both in PAP and TRY cultures (up to 25-30%) and promotes the appearance of ameboid microglia characterized by high mobility. However, the significant appearance of ameboid microglia was observed already at the early stages of cultivation (2 DIV) in TRY cultures, while in PAP cultures, the described transformation was observed at 7 DIV. Based on the absence of the ATP-induced Ca(2+) response, round shape, significant proliferation, and high mobility, we have suggested that ameboid microglia are reactive. Conclusions. Thus, our results demonstrate that papain is a more suitable proteolytic enzyme for preparing mixed hippocampal neuron-glial cultures with a higher percentage of heterogeneous microglia and functional neurons and astrocytes (tricultures).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。