Optimizing the Surface Functionalization of Peptide-MXene Nanoplatforms to Amplify Tumor-Targeting Efficiency and Photothermal Therapy.

优化肽-MXene纳米平台的表面功能化,以提高肿瘤靶向效率和光热疗法

阅读:4
作者:Kim Sujin, Padmanaban Sathiyamoorthy, Sundaram Aravindkumar, Karima Gul, Park In-Kyu, Kim Hwan D
Energy storage and conversion extensively use MXenes, a class of 2-dimensional transition metals. Research is currently exploring MXenes in areas such as biomedical imaging, positioning them as a substantial contender in biomedical applications. Even though these biocompatible MXenes have many uses, it is challenging to make nanoparticles that are all the same size. This has made it harder to use them in the biomedical field. Herein, we meticulously crafted nano-sized MXene particles, achieving exceptional uniformity and amplified photothermal conversion efficiency compared to those of their bulkier micro-sized counterparts. To make these nanoparticles better at finding tumors, we added ARGD peptides to their surfaces. These are biomolecules that are known to bind to integrin α(v)β(3), a protein that is highly expressed in cancerous cells. Our research showed that these RGD-MXene nanoconjugates have excellent targeting accuracy and can eradicate tumors very effectively. This targeted photothermal therapy platform promises to redefine cancer treatment by selectively eradicating malignant cells while safeguarding healthy tissue. Also, MXene's natural ability to change surfaces opens up a world of possibilities for a wide range of uses in nanomedicine, bringing about a new era of sophisticated therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。