A fibrin gel-loaded Gouqi-derived nanovesicle (GqDNV) repairs the heart after myocardial infarction by inhibiting p38 MAPK/NF-κB p65 pathway.

载有纤维蛋白凝胶的枸杞衍生纳米囊泡(GqDNV)通过抑制 p38 MAPK/NF-κB p65 通路修复心肌梗死后的心脏

阅读:5
作者:Zhou Huan-Huan, Zhou Xiaolei, Pei Jianqiu, Xu Shiyin, Jin Biyu, Chen Jiuling, Zhang Zixuan, Tang Mingmeng, Liu Yan, Nüssler Andreas K, Liu Liegang, Xu Qin, Wang Anxin, Xia Min, Yang Wei
The restoration of cardiac function post-myocardial infarction (MI) remains a significant clinical challenge. Emerging evidence indicates that Goji berries ("Gouqi" in Chinese) and their extracts exhibit substantial cardioprotective properties. Here, we introduce fibrin gel-loaded Gouqi-derived nanovesicles (GqDNVs-gel) as a delivery system targeted at the infarcted myocardium. The application of GqDNVs-gel resulted in a marked improvement in survival rates over a 14-day period post-MI, enhanced cardiac function, reduced infarct size, myocardial apoptosis, and excessive fibrosis, and facilitated endogenous repair. Through a combination of transcriptomics and proteomics analyses, alongside in vitro and in vivo experiments, we identified that the cardioprotective effect of GqDNVs are mediated through the inhibition of the p38 MAPK-NF-κB p65 signaling pathway. Furthermore, GqDNVs contain abundant bioactive compounds, including proteins, genetic materials, lipids, polysaccharides, and flavonoids. GqDNVs-gel intervention can reshape the post-MI cardiac environment and modulate myocardial lipid metabolism, specifically impacting glycerophospholipid and α-linolenic acid metabolic pathways. The upregulation of the peptide Arg-Thr-Ile-Glu and the downregulation of phosphatidylethanolamine in the hearts of MI mice after GqDNVs-gel intervention may play crucial roles in modulating the associated metabolic pathways. This study is the first to highlight the multifaceted therapeutic effects of GqDNVs-gel, offering a promising strategy for enhancing cardiac function post-MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。