Opioid use disorder poses a complex challenge marked by high relapse rates, which stem from an intricate interplay between physical dependence and psychological vulnerabilities. Previous research has demonstrated that hyperbaric oxygen treatment (HBOT), exposure to 100% oxygen under elevated pressure, reduced physical withdrawal symptoms in morphine-dependent male mice. However, remaining unknown are the effects of HBOT in female mice, its impact on the rewarding and aversive behaviors associated with morphine exposure, and the underlying mechanisms that may be driving these effects. We confirmed the beneficial effects of HBOT in reducing physical withdrawal signs in male mice and, for the first time, demonstrated that HBOT also alleviates these symptoms in female mice. HBOT had no significant effect on morphine-conditioned place preference or conditioned place aversion, suggesting that our HBOT regimen does not influence motivated behaviors. Finally, we show that HBOT treatment reduces microglial soma volume in morphine-treated male and female mice in the paraventricular thalamus, suggesting a shift towards a "resting" state after HBOT. These findings collectively suggest that HBOT may offer a promising, non-pharmacological approach to mitigating opioid withdrawal symptoms across sexes, potentially through modulation of microglia.
Hyperbaric oxygen treatment attenuates naloxone-precipitated opioid withdrawal behaviors and alters microglial activity in male and female mice.
高压氧治疗可减轻纳洛酮诱发的阿片类药物戒断行为,并改变雄性和雌性小鼠的小胶质细胞活性
阅读:4
作者:Southard Meg T, Giannotti Giuseppe, Thakar Amit, Willsey Trinity R, Bailey Lydia G, Salazar Frank, Hentges Shane, Quock Raymond M, Brown Travis E
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 2; 15(1):23677 |
| doi: | 10.1038/s41598-025-07937-z | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
