mTORC2 is crucial for regulating the recombinant Mycobacterium tuberculosis CFP-10 protein-induced phagocytosis in macrophages.

mTORC2 对于调节重组结核分枝杆菌 CFP-10 蛋白诱导的巨噬细胞吞噬作用至关重要

阅读:19
作者:Huang Xian-Hui, Wang Yu, Wu Liu-Ying, Jiang Ye-Lin, Ma Ling-Jie, Shi Xiao-Feng, Wang Xing, Zheng Meng-Meng, Tang Lu, Lou Yong-Liang, Xie Dan-Li
Mycobacterium tuberculosis (M. tuberculosis, Mtb) is a pathogenic bacterial species in the family Mycobacteriaceae and the causative agent of most cases of tuberculosis. Macrophages play essential roles in defense against invading pathogens, including M. tuberculosis. The study of M. tuberculosis-associated antigens is one of the hotspots of current research. The secreted proteins of M. tuberculosis, including early secretory antigen target 6 (ESTA6) and culture filtrate protein 10 (CFP-10), are crucial for the immunological diagnosis of tuberculosis. However, the relationship of CFP-10 alone with macrophages is still not well understood. In the present study, we report that the purified recombinant protein CFP-10 (rCFP-10) significantly enhanced the phagocytic capacity of murine macrophages. rCFP-10 induces both TNF-α and IL-6 production. Additionally, RNASeq analysis revealed that rCFP10 triggers multiple pathways involved with macrophage activation. Interestingly, neither mitochondrial reactive oxygen species nor lysosomal content had a significant difference treated with rCFP-10 in macrophages. Moreover, inhibition of the mammalian target of rapamycin (mTOR) activity was shown to significantly reverse the rCFP10-induced phagocytosis, various genes involved in lysosome acidification and TLR signaling. These findings highlight that the CFP-10 plays an essential role in the invasion of macrophages by M. tuberculosis, which is partly regulated by the mTORC2 signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。