The paraventricular nucleus of the thalamus (PVT) is a central node in brain networks controlling motivated behaviors. It processes inputs from cerebral cortex, brainstem, and hypothalamus and has efferents that project to a wide range of structures, including the nucleus accumbens (nAcc). It is known that PVT neurons projecting to the nAcc show c-Fos activation in response to reward-related cues, in well-trained animals. We previously found that c-Fos expression is also increased early in the conditioning process, during the first session of learning a new cue-reward association in rats, but neurons with projections to nAcc were not identified in that study. Here, we tested the hypothesis that nAcc-projecting PVT neurons would show this enhanced c-Fos expression following first exposure to the association of a visual cue with a subsequent food reward. Male rats were stereotaxically injected in the nAcc with a retrogradely transported adeno-associated virus construct leading to green fluorescent protein (GFP) expression in cell bodies of afferents from PVT. Following a single session of cue-reward training, processing of the brains with dual immunohistochemistry for c-Fos and GFP showed significantly higher density of double labelled neurons in the conditioned group, compared to controls in which the same number of cues and rewards were delivered at random intervals with respect to each other. Such activation of immediate early gene expression in PVT to nAcc projecting neurons very early in paired associative reward learning may have a role in modulating plasticity in the nAcc.
Paraventricular Nucleus of the Thalamus Neurons That Project to the Nucleus Accumbens Show Enhanced c-Fos Expression During Early-Stage Cue-Reward Associative Learning in Male Rats.
投射到伏隔核的丘脑室旁核神经元在雄性大鼠早期线索-奖励联想学习过程中表现出增强的 c-Fos 表达
阅读:5
作者:Seeger-Armbruster S, Wang M, Campbell R E, Hyland B I
| 期刊: | European Journal of Neuroscience | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Jun;61(12):e70168 |
| doi: | 10.1111/ejn.70168 | 靶点: | FOS |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
