Comprehensive Characterization of Bihormonal Cells and Endocrine Cell Lineages in Mammalian Pancreatic Islets.

哺乳动物胰岛中双激素细胞和内分泌细胞谱系的全面表征

阅读:5
作者:Yu Xin-Xin, Peng Peng, Wang Yi-Ning, He Mao-Yang, He Shuang, Jin Chen-Tao, Yang Liu, Wang Xi, Zheng Jia-Xi, Gao Jie, Xu Cheng-Ran
Understanding the role and prevalence of bihormonal cells in pancreatic islets and their potential in β-cell restoration is critical but remains ambiguous. Using genetically engineered mouse strains with specific fluorescent markers and advanced imaging flow cytometry, it is found that bihormonal cells are exceedingly rare. Single-cell RNA sequencing reveals that Gcg(+)Ppy(+) and Gcg(+)Ins(+) bihormonal cells closely resemble α-cells or PP-cells and α-cells, respectively, indicating they are neither unique lineages nor transitional states. Dual-recombinase lineage tracing further demonstrates that embryonic Gcg(+)Ins(+) cells resolve into monohormonal α-cells. Applying these insights, the scarcity of bihormonal cells in diabetic mouse models is confirmed, suggesting a limited role in β-cell regeneration. By excluding bihormonal influences, endocrine cell classification is redefined in mouse and human islets through gene coexpression network analysis, identifying distinct subtypes and regulatory modules while uncovering species-specific differences. Additionally, two unique δ-cell subpopulations are identified in human islets. Collectively, this study provides a comprehensive characterization of bihormonal cells, refines endocrine cell taxonomy, and underscores the translational challenges in modeling human islet biology in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。