Developmental onset of planarian whole-body regeneration depends on axis reset.

涡虫全身再生发育的启动取决于轴向重置

阅读:5
作者:Booth Clare L T, Stevens Brian C, Stubbert Clover A, Kallgren Neil T, Deihl Ennis W, Davies Erin L
Regenerative abilities vary across species and developmental stages of animal life cycles. Determining mechanisms that promote or limit regeneration in certain life cycle stages may pinpoint the most critical factors for successful regeneration and suggest strategies for reverse-engineering regenerative responses in therapeutic settings. In contrast to many mammalian systems, which typically show a loss of regenerative abilities with age, planarian flatworms remain highly regenerative throughout adulthood. The robust reproductive and regenerative capabilities of the planarian Schmidtea polychroa (S. polychroa) make them an ideal model to determine when and how regeneration competence is established during development. We report that S. polychroa gradually acquires whole-body regenerative abilities during late embryonic and early juvenile stages. Anterior fragments are capable of regenerating missing trunk and tail tissues from stage 6.5 onward. By contrast, the ability of posterior fragments to make new head tissue depends on the developmental stage, tissue composition of the amputated fragment, and axial position of the cut plane. Irradiation-sensitive cells are required, but not sufficient, for the onset of head regeneration ability. We propose that regulation of the main body axis reset, specifically the ability to remake an anterior organizing center, determines when whole-body regeneration competence arises during development. Supporting this hypothesis, knockdown of the canonical Wnt pathway effector Spol-β-catenin-1, a posterior determinant, induces precocious head regeneration under conditions that are normally head regeneration-incompetent. Our results suggest that regeneration competence emerges through interactions between irradiation-sensitive cells, the cellular source of new tissue, and developing adult tissue(s) harboring axial patterning information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。