SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered vascular networks.

SARS-CoV-2 刺突蛋白可诱导 3D 工程血管网络中的内皮功能障碍

阅读:4
作者:Stern Brett, Monteleone Peter, Zoldan Janet
With new daily discoveries about the long-term impacts of COVID-19, there is a clear need to develop in vitro models that can be used to better understand the pathogenicity and impact of COVID-19. Here, we demonstrate the utility of developing a model of endothelial dysfunction that utilizes human induced pluripotent stem cell-derived endothelial progenitors encapsulated in collagen hydrogels to study the effects of COVID-19 on the endothelium. These cells form capillary-like vasculature within 1 week after encapsulation and treating these cell-laden hydrogels with SARS-CoV-2 spike protein resulted in a significant decrease in the number of vessel-forming cells as well as vessel network connectivity quantified by our computational pipeline. This vascular dysfunction is a unique phenomenon observed upon treatment with SARS-CoV-2 SP and is not seen upon treatment with other coronaviruses, indicating that these effects were specific to SARS-CoV-2. We show that this vascular dysfunction is caused by an increase in inflammatory cytokines, associated with the COVID-19 cytokine storm, released from SARS-CoV-2 spike protein treated endothelial cells. Following treatment with the corticosteroid dexamethasone, we were able to prevent SARS-CoV-2 spike protein-induced endothelial dysfunction. Our results highlight the importance of understanding the interactions between SARS-CoV-2 spike protein and the endothelium and show that even in the absence of immune cells, the proposed 3D in vitro model for angiogenesis can reproduce COVID-19-induced endothelial dysfunction seen in clinical settings. This model represents a significant step in creating physiologically relevant disease models to further study the impact of long COVID and potentially identify mitigating therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。