Animals store oocytes in a dormant state for weeks to decades before ovulation. The homeostatic programs that oocytes use to endure long-term storage are poorly understood. Using female nematodes as a short-lived model, we found that oocyte formation and storage required IFET-1, the conserved eIF4E-transporter protein (eIF4ET). IFET-1 co-assembled with CAR-1 (Lsm14) to form micron-scale condensates in stored oocytes, which dissipated after oocyte activation. Depletion of IFET-1 destabilized the stored oocyte proteome, leading to lower translation, a decline in microtubule maintenance proteins, and errors in microtubule organization and meiotic spindle assembly. Deleting domains within IFET-1 impaired oocyte storage without affecting oocyte formation. Thus, in addition to establishing a healthy oocyte reserve in young mothers, IFET-1 ensures that correct levels of cytoskeletal proteins are maintained as oocytes age. eIF4ET also localized to micron-scale puncta in dormant human oocytes. Our results clarify how eIF4ET maintains the oocyte reserve and further support eIF4ET dysfunction as an upstream cause of embryonic aneuploidy and age-related infertility.
Condensate-forming eIF4ET ensures adequate levels of meiotic proteins to support oocyte storage.
形成凝聚体的eIF4ET确保有足够的减数分裂蛋白来支持卵母细胞的储存
阅读:5
作者:Bhatia Priyankaa, Tafur Judith, Amin Ruchi, Familiari Nicole E, Yaguchi Kan, Tran Vanna M, Bond Alec, Bukulmez Orhan, Woodruff Jeffrey B
| 期刊: | Life Science Alliance | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 May 29; 8(8):e202503387 |
| doi: | 10.26508/lsa.202503387 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
