Viruses modulate various aspects of host physiology, including carbon metabolism, redox balance, and mitochondrial bioenergetics to acquire the building blocks for replication and regulation of the immune response. Understanding how SARS-CoV-2 alters the host metabolism may lead to treatments for COVID-19. We report that a ubiquitous gaseous molecule, hydrogen sulfide (H2S), regulates redox, metabolism, and mitochondrial bioenergetics to control SARS-CoV-2. Virus replication is associated with down-regulation of the H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CTH), and 3-mercaptopyruvate sulfurtransferase (3-MST) in multiple cell lines and nasopharyngeal swabs of symptomatic COVID-19 patients. Consequently, SARS-CoV-2-infected cells showed diminished endogenous H2S levels and a protein modification (S-sulfhydration) caused by H2S. Genetic silencing or chemical inhibition of CTH resulted in SARS-CoV-2 proliferation. Chemical supplementation of H2S using a slow-releasing H2S donor, GYY4137, diminished virus replication. Using a redox biosensor, metabolomics, transcriptomics, and XF-flux analyzer, we showed that GYY4137 blocked SARS-CoV-2 replication by inducing the Nrf2/Keap1 pathway, restoring redox balance and carbon metabolites and potentiating mitochondrial oxidative phosphorylation. Treatment of SARS-CoV-2-infected mice or hamsters with GYY4137 suppressed viral replication and ameliorated lung pathology. GYY4137 treatment reduced the expression of inflammatory cytokines and re-established the expression of Nrf2-dependent antioxidant genes in the lungs of SARS-CoV-2-infected mice. Notably, non-invasive measurement of respiratory functions using unrestrained whole-body plethysmography (uWBP) of SARS-CoV-2-infected mice showed improved pulmonary function variables, including pulmonary obstruction (Penh), end-expiratory pause (EEP), and relaxation time (RT) upon GYY4137 treatment. Together, our findings significantly extend our understanding of H2S-mediated regulation of viral infections and open new avenues for investigating the pathogenic mechanisms and therapeutic opportunities for coronavirus-associated disorders.
Hydrogen sulfide (H2S) coordinates redox balance, carbon metabolism, and mitochondrial bioenergetics to suppress SARS-CoV-2 infection.
硫化氢(H2S)协调氧化还原平衡、碳代谢和线粒体生物能量学,以抑制SARS-CoV-2感染
阅读:9
作者:Agrawal Ragini, Pal Virender Kumar, K S Suhas, Menon Gopika Jayan, Singh Inder Raj, Malhotra Nitish, C S Naren, Ganesh Kailash, Rajmani Raju S, Narain Seshasayee Aswin Sai, Chandra Nagasuma, Joshi Manjunath B, Singh Amit
| 期刊: | PLoS Pathogens | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 19; 21(5):e1013164 |
| doi: | 10.1371/journal.ppat.1013164 | 研究方向: | 代谢 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
