Diabetic wounds, due to severe vascular dysfunction, persistent inflammatory responses, and susceptibility to microbial infections, exhibit delayed healing and pose a significant challenge to human health. Diabetic wounds face delayed healing and significant health challenges due to vascular dysfunction, persistent inflammation, and infection susceptibility. Therefore, the development of drugs with antibacterial capabilities, as well as the ability to effectively regulate inflammation and promote angiogenesis, is of great importance. In this study, a novel antibacterial peptide (named MYR-DM-ANG1-7) was designed. It is composed of the coassembly of myristoylated antibacterial peptide cathelicidin-DM and angiotensin 1-7 (ANG 1-7). This novel antibacterial peptide demonstrates antibacterial activity against both Escherichia coli and Staphylococcus aureus bacteria and can even effectively inhibit the formation of biofilms. In vitro experiments confirmed that MYR-DM-ANG1-7 can promote the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), reduce the level of oxidative stress, alleviate the increase in mitochondrial membrane potential caused by high glucose (HG) and lipopolysaccharide (LPS), and decrease the expression of proinflammatory cytokines IL-6 and TNF-α. Western blot experiments confirmed that MYR-DM-ANG1-7 activates PI3K by targeting the membrane receptor Mas, thereby activating AKT, which ultimately promotes the activation of eNOS to produce nitric oxide (NO), thereby enhancing the angiogenic capacity of HUVECs. In vivo experiments showed that the local application of MYR-DM-ANG1-7 significantly improved the healing of infected diabetic wounds in mice, including increased wound healing rate, reduced inflammatory cell infiltration, and promoted collagen fiber and blood vessel formation. In summary, this study successfully constructed a multifunctional novel self-assembling antibacterial peptide that can effectively regulate oxidative stress, inflammation, and angiogenesis to promote the repair of diabetic infected wounds. This research provides a brand new self-assembling lipopeptide therapeutic strategy for the treatment of diabetic infected wounds.
Myristoylated Cathelicidin-DM Fused With ANG1-7: A Novel Self-Assembling Antimicrobial Peptide for the Treatment and Mechanism of Diabetic Infected Wounds.
肉豆蔻酰化抗菌肽-DM与ANG1-7融合:一种新型自组装抗菌肽用于治疗糖尿病感染伤口及其作用机制
阅读:17
作者:Feng Rongqin, Wang Peng, Fan Li, Lu He, Yao Danna, Sun Panpan, Liu Zhonghua, Han Fu, Bai Xiaozhi, Yang Xuekang, Han Juntao
| 期刊: | Journal of Diabetes Research | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Sep 2; 2025:9601959 |
| doi: | 10.1155/jdr/9601959 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
