AIMS: Open fractures pose a substantial treatment challenge, with adjacent muscle loss being a major complication. The induced membrane (IM) technique has shown promise in treating complicated fractures. The aim of this study is to investigate the impact of adjacent muscle trauma on segmental fracture healing using recombinant human bone morphogenetic protein-2 (rhBMP-2) via the IM technique. METHODS: Skeletally mature male rats (n = 10 to 11 per group) underwent unilateral 3 mm segmental bone defects (SBD) of the tibial diaphysis or a composite tissue injury (CTI), which included a SBD along with volumetric muscle loss (VML). A polymethyl methacrylate (PMMA) spacer was formed within the SBD of each rat. After a four-week period, the PMMA spacer was removed, and the defect was treated with a rhBMP2-impregnated collagen sponge. Longitudinal micro-CT (µCT) imaging was conducted at baseline (Day 0) and at weeks 2, 4, 8, and 12 post-spacer removal to monitor fracture healing progress. At the 12-week postoperative mark, a comprehensive analysis was conducted, including endpoint µCT analysis, evaluation of neuromuscular function, tibia torsional testing, and histological examination. RESULTS: Longitudinal µCT scans revealed no differences in bone formation or bone mineral density (BMD) at any timepoint between the SBD and CTI groups. High-resolution µCT analysis at the endpoint also showed no variations in bone quality. Torsion testing confirmed that VML did not affect bone strength. Notably, CTI animals exhibited an irreversible reduction in muscle mass and neuromuscular function, which was not observed in the SBD group. CONCLUSION: Introducing the additional challenge of VML alongside SBD did not hinder the effectiveness of the induced membrane technique in healing a critical-sized defect.
Overcoming the detrimental impact of volumetric muscle loss on segmental fracture healing via the induced membrane technique.
通过诱导膜技术克服肌肉体积损失对节段性骨折愈合的不利影响
阅读:17
作者:Clark Andrew R, Valerio Michael S, Kulwatno Jonathan, Kanovka Sergey S, Ferrer Andrew L, Dearth Christopher L, Goldman Stephen M
| 期刊: | Bone & Joint Research | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 23; 14(6):568-577 |
| doi: | 10.1302/2046-3758.146.BJR-2024-0334.R1 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
