BACKGROUND AND AIMS: Developmental exposure to an elevated ratio of omega-6 (n6) to omega-3 (n3) fatty acids (FA) is linked to increased infant body fat and risk of future childhood obesity. We demonstrated in mice that the high n6/n3 developmental exposure reduced nuclear receptor subfamily 2 group F member 2 (NR2F2) in Adipocyte Stem Cells (ASCs), coincident with an altered ASC mitochondrial expression profile and increased white adipose accumulation in pups. This suggested that NR2F2-low ASCs might adopt a nutrient-storage phenotype. Here, we tested the hypothesis that NR2F2 is required in ASCs to undergo beige adipogenesis and metabolism needed during postnatal life for energy and thermogenesis. METHODS: C57BL/6J dams were randomized to either n6-rich or balanced n6/n3 control diets at the time of mating and underwent normal gestation and parturition. On postnatal day 12 (PND12), whole-body offspring metabolism was quantified by indirect calorimetry in conjunction with (13)C-palmitate and (13)C-glucose tracing. Inguinal fat pad ASCs were isolated by flow cytometry to assess adipocyte differentiation potential, global gene expression and proteomics, and mitochondrial oxidation. NR2F2 was transiently re-activated in vitro in ASCs with its ligand, 1-deoxysphingosine (1-DSO), and NR2F2 was ablated in ASCs ex vivo using homozygous floxed Nr2f2 pups to determine loss of function, ensure specificity of 1-DSO treatment during gain of function. RESULTS: Excess developmental n6-FA exposure reduced whole-body (13)C-palmitate and (13)C-glucose oxidation, diminished PND12 pup energy expenditure, and increased triacylglyceride accumulation in inguinal adipose. In ASCs isolated from n6-FA exposed pups, NR2F2 was decreased. These NR2F2-low ASCs formed downstream adipocytes with decreased beige metabolic regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), peroxisome proliferator-activated receptor gamma (PPARγ), PR domain containing 16 (PRDM16), and uncoupling protein 1 (UCP1), had lower glycolysis and lipid metabolism enzymes, oxidized lipid and glucose at lower rates, and had increased lipogenic enzymes. Ex vivo deletion of Nr2f2 from ASCs recapitulated the metabolic deficits observed in the adipocytes derived from NR2F2-low ASCs isolated from n6-FA exposed pups. NR2F2 loss disrupted beige regulator induction, reduced adipocyte FAO, and promoted lipogenesis pathways, mirroring the n6-FA phenotype. Transient NR2F2 activation of ASCs from n6-FA pups using 1-DSO restored induction of beige regulators, increased mitochondrial oxidative phosphorylation enzymes, reduced lipogenic/storage pathways, ultimately enhancing nutrient oxidation. CONCLUSIONS: These findings demonstrate that excess n6-FA developmental exposure disrupts NR2F2-mediated ASC fate determination, leading to formation of nutrient-storing, lipogenic adipocytes. This work highlights NR2F2 as an important upstream or parallel regulator necessary for beige adipogenesis and underscores its activation as a potential therapeutic approach to mitigate early-life obesity risk. GEO RECORD: GSE284936; Token = orkvgqayblshjsds.
Activating nuclear receptor subfamily 2 group F member 2 in adipocyte stem cells rescues beige adipocyte metabolism impaired by excess early-life omega-6 fatty acids.
激活脂肪干细胞中的核受体亚家族 2 组 F 成员 2 可挽救早期生活中过量 omega-6 脂肪酸损害的米色脂肪细胞代谢
阅读:7
作者:Das Snehasis, Varshney Rohan R, Farriester Jacob W, Kyere-Davies Gertrude, Martinez Alexandrea E, Hill Kaitlyn B, Kinter Michael, Mullen Gregory P, Nagareddy Prabhakara R, Rudolph Michael C
| 期刊: | Clinical Nutrition | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 Aug;51:63-80 |
| doi: | 10.1016/j.clnu.2025.06.003 | 研究方向: | 代谢 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
