Surface-Anchored Ticagrelor Gelatin Nanoparticles-Platelets System for Enhanced Anti-PD-L1 Therapy Response and Boosted Chemotherapeutic Efficacy of Nanomedicines.

表面锚定替格瑞洛明胶纳米颗粒-血小板系统增强抗PD-L1治疗反应和提高纳米药物的化疗疗效

阅读:5
作者:Lu Qi, Ye Hao, Zhao Jian, Fan Xiaoyuan, Wang Kaiyuan, Han Zeyu, Liu Tian, Du Lili, Song Jiaxuan, Wang Helin, Zhang Haotian, He Zhonggui, Sun Jin
The tumor microenvironment is characterized by immunosuppression and compromised intratumoral perfusion, which impairs the effectiveness of immune checkpoint inhibitors and nanomedicines. A significant challenge is the role of activated platelets, as they increase transfer-mediated PD-L1 expression from tumor cells and maintain the integrity of tumor vasculature. These platelets support tumor growth by stabilizing the vasculature and enabling immune evasion, as well as shielding tumor cells from immune detection. To address these platelet-mediated negative antitumor effects, we have developed bioengineered platelets (PTNPs) with surface-anchored ticagrelor-loaded gelatin nanoparticles. This study utilizes the natural tendency of platelets to localize their activated counterparts into tumors. Upon binding to tumor-associated activated platelets, the PTNPs release ticagrelor in response to the secreted matrix metalloproteinases by activated platelet, inhibiting further platelet activation. This reduction in platelet activation lessens platelet-facilitated immunosuppression and diminishes the transferred-PD-L1 expression from cancer cells to platelets, thus enhancing the immune response of anti-PD-L1 therapy. Additionally, this strategy weakens the activated platelets' contribution to tumor vascular integrity, improving the extravasation and chemotherapeutic efficacy of nanomedicines. Our findings highlight the crucial role of platelet activation in tumor biology and introduce PTNPs as an effective approach to disrupt tumor-supporting platelet activities and enhance anticancer treatments efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。