Bats are reservoirs of emerging zoonotic viruses that may cause severe disease in humans and agricultural animals. However, it is poorly understood how bats can tolerate diverse viral infections. Here, we characterized type I interferon response pathways in kidney cell lines derived from two divergent bat species, Pteropus alecto and Eptesicus fuscus, identifying distinct mechanisms underlying their enhanced control of viral infection. We demonstrate the critical roles of STAT1/STAT2 in IFNβ signaling, along with species-specific adaptations that contribute towards a steady and ready antiviral state. Unlike in humans, bat IFNβ signaling processes resist the immune antagonistic properties of MERS-CoV which further explains the ability of bats to tolerate coronavirus infections. Transcriptomic analysis on interferon stimulated cell lines identified canonical and non-canonical interferon stimulated genes including two differentially expressed genes, IFIT1 and GBP1, that exhibit enhanced antiviral activity against a wide range of viruses, including the bat-derived Eptesipoxvirus. We have identified a functional (AV1) motif within E. fuscus GBP1 that restricts Eptesipoxvirus replication. Ultimately, our work provides important insights into the evolution of enhanced interferon-mediated antiviral responses in bats, contributing to their ability to resist viral diseases.
Bat-specific adaptations in interferon signaling and GBP1 contribute to enhanced antiviral capacity.
蝙蝠特有的干扰素信号传导和 GBP1 适应性增强了其抗病毒能力
阅读:7
作者:Gonzalez Victoria, Lobb Briallen, Côté Jacob, Bhuinya Arkadeb, Tubb Adriana G, Nuthalapati Stephen S, Asavajaru Akarin, Zhou Yan, Misra Vikram, Falzarano Darryl, Sweeney Trevor R, Gobeil Sophie M C, Wang Linfa, Doxey Andrew C, Banerjee Arinjay
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 16(1):5735 |
| doi: | 10.1038/s41467-025-61254-7 | 种属: | Viral |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
