Isolation of bovine milk-derived extracellular vesicles via a capillary-channeled polymer (C-CP) fiber stationary phase.

利用毛细管通道聚合物(C-CP)纤维固定相分离牛乳来源的细胞外囊泡

阅读:4
作者:Mata Carolina, Pimentel Jerisa M, Huang Kun, Stamatikos Alexis, Marcus R Kenneth
Extracellular vesicles (EVs) are released by all cell types into the extracellular environment. A subset of EVs, known as exosomes, range in size from 30 to 200 nm and are of biochemical interest due to their function as vehicles of intercellular communication. Their ability to transport proteinaceous species and genetic material at the cellular level makes them prime candidates as vectors in gene therapies. Focusing on biotherapeutics, bovine milk-derived extracellular vesicles (MDEVs) hold particular promise as an alternative to other exosome sources for therapeutics delivery. Bovine milk poses unique challenges due to the complex colloidal matrix, composed predominantly of fats and proteins like casein, which form micelles that exhibit exosome-like characteristics, specifically size and density. When faced with complex matrices like milk, conventional size/density-based isolation methods including ultracentrifugation and size exclusion chromatography struggle to provide high purity yields on practical time and cost scales. When paired with a stepwise hydrophobic interaction chromatography (HIC) gradient, polyester (PET) capillary-channeled polymer (C-CP) fibers in column and spin-down tips formats have been used effectively to isolate exosomes from highly diverse sources. Here, PET C-CP fiber columns are demonstrated to isolate MDEVs from pre-treated raw milk, yielding concentrations of 1.5 × 10(10) particles mL⁻(1) with purities of ~2 × 10(10) EVs µg(-1) protein in less than 20 min. The efficacy of the isolation process is verified by a suite of characterization methods. Implementing PET C-CP fiber columns for MDEV isolation addresses the challenges associated with conventional isolation methods, holding promise for scale-up towards therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。