Pelvic organ prolapse (POP) is a highly prevalent yet neglected health burden for women. Strengthening the pelvic floor with bioactive tissue-engineered meshes is an emerging concept. This study investigates tissue regenerative design parameters, including degradability, porosity, and angulation, to develop alternative degradable melt electrowritten (MEW) constructs for surgical applications of POP. MEW constructs were fabricated in hierarchical geometries by two-way stacking of the fibers with three different inter layer angles of 90°, 45°, or 22.5°. Implants printed at 22.5° have higher tensile strength under dry conditions and show better vaginal fibroblast (VF) attachment in vitro. In vivo assessment using preclinical mouse and ovine models demonstrates more effective degradation and improved tissue integration in 22.5° angular meshes compared to 90° and 45° meshes, with evidence of neo-collagen deposition within implants at 6 weeks. The pattern and geometry of the layered MEW implants also influence the foreign body response, wherein the anti-inflammatory phenotype shows a greater ratio of anti-inflammatory CD206+ M2 macrophages/pro-inflammatory CCR7+ M1 macrophages. This presents an attractive strategy for improving the design and fabrication of next-generation vaginal implants for pelvic reconstructive surgery.
3D Printed Mesh Geometry Modulates Immune Response and Interface Biology in Mouse and Sheep Model: Implications for Pelvic Floor Surgery.
3D 打印网状几何结构调节小鼠和绵羊模型中的免疫反应和界面生物学:对盆底手术的启示
阅读:6
作者:Paul Kallyanashis, Darzi Saeedeh, O'Connell Cathal D, Hennes David M Z B, Rosamilia Anna, Gargett Caroline E, Werkmeister Jerome A, Mukherjee Shayanti
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(11):e2405004 |
| doi: | 10.1002/advs.202405004 | 种属: | Mouse、Sheep |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
