iSoMAs: Finding isoform expression and somatic mutation associations in human cancers.

iSoMAs:在人类癌症中发现异构体表达和体细胞突变关联

阅读:4
作者:Tan Hua, Gotea Valer, Jaiswal Sushil K, Seidel Nancy E, Holland David O, Fedkenheuer Kevin, Elkahloun Abdel G, Bang-Christensen Sara R, Elnitski Laura
Aberrant alternative splicing, prevalent in cancer, impacts various cancer hallmarks involving proliferation, angiogenesis, and invasion. Splicing disruption often results from somatic point mutations rewiring functional pathways to support cancer cell survival. We introduce iSoMAs (iSoform expression and somatic Mutation Association), an efficient computational pipeline leveraging principal component analysis technique, to explore how somatic mutations influence transcriptome-wide gene expression at the isoform level. Applying iSoMAs to 33 cancer types comprising 9,738 tumor samples in The Cancer Genome Atlas, we identified 908 somatically mutated genes significantly associated with altered isoform expression across three or more cancer types. Mutations linked to differential isoform expression occurred through both cis- and trans-acting mechanisms, involving well-known oncogenes/suppressor genes, RNA binding protein and splicing factor genes. With wet-lab experiments, we verified direct association between TP53 mutations and differential isoform expression in cell cycle genes. Additional iSoMAs genes have been validated in the literature with independent cohorts and/or methods. Despite the complexity of cancer, iSoMAs attains computational efficiency via dimension reduction strategy and reveals critical associations between regulatory factors and transcriptional landscapes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。