Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic cardiomyopathy.

蛋白质相互作用、网络药理学和机器学习共同作用,预测与肥厚型心肌病线粒体功能障碍相关的基因

阅读:10
作者:Chen Jia-Lin, Xiao Di, Liu Yi-Jiang, Wang Zhan, Chen Zhi-Huang, Li Rui, Li Li, He Rong-Hai, Jiang Shu-Yan, Chen Xin, Xu Lin-Xi, Lu Feng-Chun, Wang Jia-Mao, Shan Zhong-Gui
This study looked at possible targets for hypertrophic cardiomyopathy (HCM), a condition marked by thickening of the ventricular wall, primarily in the left ventricle. We employed differential gene analysis and weighted gene co-expression network analysis (WGCNA) on samples. We then carried out an enrichment analysis. We also investigated the process of immunological infiltration. We employed six machine learning techniques and two protein-protein interaction (PPI) network gene selection approaches to search for the most characteristic gene (MCG). In the validation ladder, we verified the expression of MCG. Furthermore, we examined the MCG expression levels in HCM animal and cell models. Finally, we performed molecular docking and predicted potential medications for HCM treatment. 7975 differentially expressed genes (DEGs) were found in our study. We also identified 236 genes in the blue module using WGCNA. Screening at the transcriptome and protein levels was used to mine MCG. The final result screened CCAAT/Enhancer Binding Protein Delta (CEBPD) as MCG. We confirmed that MCG expression matched the outcomes of the experimental ladder. The level of CEBPD mRNA and protein was lowered in HCM animal and cellular models. Given that Abt-751 had the highest binding affinity to CEBPD, it might be a projected targeted medication. We found a new target gene for HCM called CEBPD, which is probably going to function by mitochondrial dysfunction. An innovative aim for the management or avoidance of HCM is offered by this analysis. Abt-751 may be a predicted targeted drug for HCM that had the greatest binding affinity with CEBPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。