Elevated succinate accumulation has been demonstrated to be associated with metabolic and inflammatory disorders. Our previous study revealed that adipose-derived stem cells (ADSC) from obese individuals exhibit high succinate, reduced biological activity, and mitochondrial dysfunction. However, the precise role of succinate in these processes remains unclear. Here, we investigated the effects of excess succinate on cellular biological activity, immunomodulatory capacity, and mitochondrial function of ADSC. We found that elevated succinate levels in ADSC decreased proliferation and differentiation potential, while promoting M1 macrophage polarization. Furthermore, succinate accumulation impaired mitochondrial biogenesis and metabolism, increasing in reactive oxygen species (ROS) production and inflammatory responses. Transcriptome sequencing analysis further confirmed that succinate upregulated inflammatory pathways, suppressed mitochondrial biogenesis and metabolism, and enhanced cellular apoptosis and senescence, accompanied by reduced DNA replication and repair. Overall, these findings imply that succinate accumulation in ADSC triggers inflammatory response and mitochondrial dysfunction, potentially contributing to a decline of cellular biological activity. Targeting succinate may offer therapeutic potential for metabolic disorders.
Succinate reduces biological activity and mitochondrial function of human adipose-derived stem cells.
琥珀酸会降低人类脂肪干细胞的生物活性和线粒体功能
阅读:10
作者:Wang Bo, Wang Xinxin, Guo Meijin, Xu Huiming
| 期刊: | Cell Cycle | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jan-Feb;24(1-4):16-28 |
| doi: | 10.1080/15384101.2025.2508109 | 种属: | Human |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
