Marek's disease virus (MDV), a highly contagious and oncogenic avian alphaherpesvirus, establishes a latent infection primarily in CD4(+) T cells. Latent infections are necessary for both persistent lifelong MDV infection and viral tumorigenesis. MicroRNAs (miRNAs) play critical roles as post-transcriptional regulators of viral infections. However, the role of miRNAs in regulating MDV latency remains unclear. In this study, we found that an MDV-encoded miRNA, miR-M6-5p, inhibited viral lytic replication in vitro by functional screening and that infection with an MDV mutant lacking miR-M6-5p resulted in impaired MDV latency, proliferation, and tumor formation in vivo. Importantly, we identified lysine-specific demethylase 2b (KDM2B), an important epigenetic factor, as a target of miR-M6-5p. Furthermore, KDM2B knockdown increased the level of the transcriptionally repressive histone mark H3K27me3 on the key lytic gene pp38 promoter, accompanied by suppression of pp38 expression and reduced latent-to-lytic switch in MDV-latently infected cells, while treatment of cells with H3K27me3 inhibitors (GSK126 and Tazemetostat) markedly promoted the expression of pp38 and MDV reactivation from latency. Thus, miR-M6-5p facilitates MDV latency by epigenetically suppressing pp38 expression by targeting KDM2B. These ï¬ndings unravel the mechanism by which a virus-encoded miRNA plays a critical role in the regulation of latent MDV infection.IMPORTANCESimilar to other herpesviruses, MDV can establish a lifelong latent infection in the host. During the latency, MDV integrates its genome into the host genome to maintain the viral genome, which is considered a prerequisite for tumor formation. Reactivation of the latent viral genome in response to intracellular and extracellular stimuli re-enters lytic replication, resulting in pathological recurrence and/or viral shedding. However, the regulatory mechanisms underlying MDV latency remain poorly understood. In the present study, we investigated the role of virus-encoded miRNAs in MDV latency. We found that miR-M6-5p facilitated MDV latency, proliferation, and tumor formation in vivo. Mechanistically, miR-M6-5p epigenetically suppressed the expression of the viral lytic gene pp38 by directly targeting the histone demethylase KDM2B. These ï¬ndings will advance our understanding of the role of virus-encoded miRNA in the regulation of viral latency and will help guide the development of novel strategies for the effective control of MDV.
Marek's disease virus-encoded microRNA-M6-5p facilitates viral latent infection by targeting histone demethylase KDM2B.
马立克氏病病毒编码的microRNA-M6-5p通过靶向组蛋白去甲基化酶KDM2B促进病毒潜伏感染
阅读:4
作者:Zhou Linyi, Zhu Runan, Jiang Bo, Cheng Jing, Liu Wenxiao, Yao Yongxiu, Li Yongqing
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 99(2):e0200724 |
| doi: | 10.1128/jvi.02007-24 | 种属: | Viral |
| 研究方向: | 表观遗传 | 信号通路: | DNA甲基化 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
