GPX1 and RCN1 as New Endoplasmic Reticulum Stress-Related Biomarkers in Multiple Sclerosis Brain Tissue and Their Involvement in the APP-CD74 Pathway: An Integrated Study Combining Machine Learning and Multi-Omics.

GPX1 和 RCN1 作为多发性硬化症脑组织中新的内质网应激相关生物标志物及其在 APP-CD74 通路中的作用:一项结合机器学习和多组学的综合研究

阅读:2
作者:Qiao Zhixin, Wang Yanping, Ma Xiaoru, Zhang Xiyu, Wu Junfeng, Li Anqi, Wang Chao, Xiu Xin, Zhang Sifan, Lang Xiujuan, Liu Xijun, Sun Bo, Li Hulun, Liu Yumei
This study identified 13 endoplasmic reticulum stress (ERS)-related biomarkers associated with multiple sclerosis (MS) through integrated bioinformatics analysis (including weighted gene co-expression network analysis and machine learning algorithms) and single-cell sequencing, combined with validation in an experimental autoimmune encephalomyelitis (EAE) mouse model. Among them, GPX1, RCN1, and UBE2D3 exhibited high diagnostic value (AUC > 0.7, p < 0.05), and the diagnostic potential of GPX1 and RCN1 was confirmed in the animal model. The study found that memory B cells, plasma cells, neutrophils, and M1 macrophages were significantly increased in MS patients, while naive B cells and activated NK cells decreased. Consensus clustering based on key ERS-related genes divided MS patients into two subtypes. Single-cell sequencing showed that microglia and pericytes were the cell types with the highest expression of key ERS-related genes, and the APP-CD74 pathway was enhanced in the brain tissue of MS patients. Mendelian randomization analysis suggested that GPX1 plays a protective role in MS. These findings reveal the mechanisms of ERS-related biomarkers in MS and provide potential targets for diagnosis and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。