Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings.

机械自适应和可部署的皮层内探针能够进行长期神经电生理记录

阅读:2
作者:Wang Suhao, Jiang Qianqian, Liu Hang, Yu Chaonan, Li Pengxian, Pan Gang, Xu Kedi, Xiao Rui, Hao Yaoyao, Wang Chengjun, Song Jizhou
Flexible intracortical probes offer important opportunities for stable neural interfaces by reducing chronic immune responses, but their advances usually come with challenges of difficult implantation and limited recording span. Here, we reported a mechanically adaptive and deployable intracortical probe, which features a foldable fishbone-like structural design with branching electrodes on a temperature-responsive shape memory polymer (SMP) substrate. Leveraging the temperature-triggered soft-rigid phase transition and shape memory characteristic of SMP, this probe design enables direct insertion into brain tissue with minimal footprint in a folded configuration while automatically softening to reduce mechanical mismatches with brain tissue and deploying electrodes to a broader recording span under physiological conditions. Experimental and numerical studies on the material softening and structural folding-deploying behaviors provide insights into the design, fabrication, and operation of the intracortical probes. The chronically implanted neural probe in the rat cortex demonstrates that the proposed neural probe can reliably detect and track individual units for months with stable impedance and signal amplitude during long-term implantation. The work provides a tool for stable neural activity recording and creates engineering opportunities in basic neuroscience and clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。