Cross-linking mass spectrometry has evolved as a powerful technique to study protein-protein interactions and to provide structural information. Low reaction efficiencies, and complex matrices lead to challenging system wide crosslink analysis. We improved and streamlined an Azide-A-DSBSO based in vivo crosslinking workflow employing two orthogonal effective enrichment steps: Affinity enrichment and size exclusion chromatography (SEC). Combined, they allow an effective enrichment of DSBSO containing peptides and remove the background of linear as well as mono-linked peptides. We found that the analysis of a single SEC fraction is effective to yield ~90% of all crosslinks, which is important whenever measurement time is limited, and sample throughput is crucial. Our workflow resulted in more than 5000 crosslinks from K562 cells and generated a comprehensive PPI network. From 393 PPI found within the nucleus, 56 are novel. We further show, that by applying DSBSO to nuclear extracts we yield more crosslinks on lower abundant proteins and showcase this on the DEAD-box RNA helicase DDX39B which is predominantly expressed in the nucleus. Our data indicates that DDX39B might be present in monomeric and dimeric forms together with DDX39A within the nuclear extracts analyzed.
In vivo crosslinking and effective 2D enrichment for proteome wide interactome studies.
体内交联和有效的二维富集用于蛋白质组范围的相互作用组研究
阅读:7
作者:Bräuer Philipp, Tirian Laszlo, Müller Fränze, Mechtler Karl, Matzinger Manuel
| 期刊: | Communications Chemistry | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 8(1):245 |
| doi: | 10.1038/s42004-025-01644-6 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
