cfMethylPre: deep transfer learning enhances cancer detection based on circulating cell-free DNA methylation profiling.

cfMethylPre:深度迁移学习增强基于循环无细胞DNA甲基化谱的癌症检测

阅读:4
作者:Zhang Xuchao, Chen Jing, Wang Yongtian, Wang Xiaofeng, Hu Jialu, Peng Jiajie, Shang Xuequn, Wang Yanpu, Wang Tao
Cancer remains a significant global health burden, underscoring the need for innovative diagnostic tools to enable early detection and improve patient outcomes. While circulating cell-free DNA (cfDNA) methylation has emerged as a promising biomarker for noninvasive cancer diagnostics, existing methods often face limitations in handling the high-dimensionality of methylation data, small sample sizes, and a lack of biological interpretability. To address these challenges, we propose cfMethylPre, a novel deep transfer learning framework tailored for cancer detection using cfDNA methylation data. cfMethylPre leverages large language model pretrained embeddings from DNA sequence information and integrates them with methylation profiles to enhance feature representation. The deep transfer learning process involves pretraining on bulk DNA methylation data encompassing 2801 samples across 82 cancer types and normal controls, followed by fine-tuning with cfDNA methylation data. This approach ensures robust adaptation to cfDNA's unique characteristics while improving predictive accuracy. Our model achieved superior predictive accuracy compared with state-of-the-art methods, with a weighted Matthews Correlation Coefficient of 0.926 and a weighted F1-score of 0.942. Through model interpretation and biological experimental validation, we identified three novel breast cancer genes-PCDHA10, PRICKLE2, and PRTG-demonstrating their inhibitory effects on cell proliferation and migration in breast cancer cell lines. These findings establish cfMethylPre as a powerful and interpretable tool for cancer diagnostics and biological discovery, paving the way for its application in precision oncology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。