JUND plays a genome-wide role in the quiescent to contractile switch in the pregnant human myometrium.

JUND 在妊娠期人类子宫肌层的静止状态向收缩状态转变过程中发挥着全基因组范围的作用

阅读:4
作者:Khader Nawrah, Dorogin Anna, Shynlova Oksana, Mitchell Jennifer A
The myometrium, the muscular layer of the uterus, undergoes crucial transitions during pregnancy, maintaining quiescence throughout gestation, and generating coordinated contractions during labor. Dysregulation of this transition can lead to premature labor with serious complications for the infant. Despite extensive gene expression data available for varying myometrial states, the molecular mechanisms governing the increase in contraction-associated gene expression at labor onset remain unclear. Transcription factors, such as JUND and progesterone receptor (PR), play essential roles in regulating transcription of select myometrial contraction-associated genes, however, a broader understanding of their involvement in transcriptional regulation at a genome-wide scale is lacking. This study examines changes in transcription and JUND binding within human myometrial tissue during the transition from quiescence (term-not-in labor/TNIL) to contractility (term labor/TL). Total RNA-sequencing reveals a global increase in primary transcript levels at TL, with AP-1/JUND binding motifs overrepresented in the promoters of upregulated transcripts. Interestingly, ChIP-seq analysis demonstrates higher JUND enrichment in TNIL compared to TL tissues, suggesting its role in preparing the myometrium for labor onset. Integration of JUND and PR ChIP-seq data identifies over 10,000 gene promoters bound by both factors at TNIL and TL, including genes involved in labor-driving processes. Additionally, the study uncovers elevated levels of enhancer RNAs (eRNAs) at intergenic JUND peaks in laboring myometrial tissues, and implicates additional transcription factors, such as NFKB and ETS, in the regulatory switch from quiescence to contractility. In summary, this research enhances our understanding of the myometrial molecular regulatory network during pregnancy and labor, shedding light on the roles of JUND and PR in gene expression regulation genome-wide. These findings open avenues for further exploration, potentially leading to improved interventions for preventing premature labor and the associated complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。