Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

类维生素A和类维生素A结合蛋白:在代谢疾病中发挥意想不到的作用

阅读:6
作者:Blaner William S, Paik Jisun, Brun Pierre-Jacques, Golczak Marcin
Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances. Binding of retinol or 2-MAGs involves the same binding pocket and 2-MAGs are able to displace retinol binding. Consequently, RBP2 is a physiologically relevant binding protein for endocannabinoids and endocannabinoid-like substances and is a nexus where the very potent retinoid and endocannabinoid signaling pathways converge. When Rbp2-null mice are challenged orally with fat, this gives rise to elevated levels in the proximal small intestine of both 2-AG and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) in the proximal small intestine. We propose that elevation of GIP concentrations upon high fat diet feeding gives rise to obesity and the other elements of metabolic disease seen in Rbp2-null mice. Unexpectedly, we observed that RBP4 is present in secretory granules of the GIP-secreting intestinal K-cells and is co-secreted with GIP in response to a stimulus that provokes GIP secretion. Moreover, RBP4 is co-secreted along with glucagon from pancreatic alpha-cells in response to a secretory stimulus. The association during the secretory process of RBP4 with potent hormones that regulate metabolism (GIP and glucagon) accounts for at least some of the metabolic disease seen upon overexpression of Rbp4.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。