IGF-1R promotes pain-like behavior in rats with myofascial pain syndrome via the PI3K/AKT pathway.

IGF-1R 通过 PI3K/AKT 通路促进患有肌筋膜疼痛综合征的大鼠出现疼痛样行为

阅读:6
作者:Zhou Lingwei, Pei Miao, Qi Tian, Liu Yu, Li Xiaoyue, Li Xuan, Chen Qinghe, Jin Feihong, Yang Shaozhong, Qi Feng
Myofascial pain syndrome (MPS) is a common chronic pain condition characterized primarily by the presence of myofascial trigger points (MTrPs). While the insulin-like growth factor-1 receptor (IGF-1R) is known to be upregulated in injured muscles and implicated in orofacial neuropathic pain, its role in the peripheral mechanisms underlying MTrPs remains poorly understood. In this study, we aimed to investigate the expression of IGF-1R in MTrPs and explore the molecular mechanisms by which IGF-1R activation induces pain-like behavior in a rat model of MTrPs. We used Sprague-Dawley rats to assess IGF-1R signaling, measuring pain-like behaviors with the Randall-Selitto test. Muscle tissue morphology was examined using hematoxylin and eosin (HE) staining, while IGF-1R-related proteins were quantified through immunohistochemistry (IHC) and Western blot (WB) analysis. Our results showed that IGF-1R expression is significantly elevated in the muscle tissue of rats with MTrPs, with this upregulation correlating positively with the hyperalgesia. Furthermore, activation of IGF-1R was found to induce pain-like behavior via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Notably, inhibition of PI3K/AKT reversed the pain-like behaviors triggered by IGF-1R activation. These findings suggest that the increased expression of IGF-1R and subsequent activation of the PI3K/AKT/mTOR pathway may contribute to heightened nociception in MTrPs, offering new insights into the molecular mechanisms underlying MPS and potential targets for therapeutic intervention.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。