Physio-metabolic response, immune function, epigenetic markers, and reproductive performance of rabbits under environmental stress: the mitigating role of boswellia essential oil nanoemulsion.

环境压力下兔子的生理代谢反应、免疫功能、表观遗传标记和繁殖性能:乳香精油纳米乳液的缓解作用

阅读:10
作者:Abdelnour Sameh A, Abdelaal Mahmoud, Sindi Ramya Ahmad, Alfattah Mohammed A, Khalil Wael A, Bahgat Laila B, Sheiha Asmaa M
Global warming poses a significant threat to reproductive health of rabbits. Sustainable nutritional strategies are crucial for ensuring rabbit production and maintaining food security under these challenging conditions. This study sought to assess the protective benefits of dietary boswellia essential oil nano-emulsion (BEON) against oxidative stress, immune dysregulation, ferroptosis, and organ damage in female rabbits exposed to severe thermal stress. A total of 120 female rabbits were divided into four groups of 30 rabbits each. The rabbits were fed a basal diet supplemented with 0 (BEON0), 0.25 (BEON0.25), 0.5 (BEON0.5), and 1.0 (BEON1.0) mL of BEON per kilogram of diet. Results demonstrated that the BEON1.0 group exhibited significantly higher levels of IgG, superoxide dismutase (SOD), and glutathione peroxidase (GPx), while the BEON0.25 group showed elevated levels of IgM, catalase, and total antioxidant capacity (TAC) (P < 0.05). All BEON treatments significantly reduced malondialdehyde (MDA) levels (P < 0.01). Serum levels of progesterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly elevated in the BEON0.5 and BEON1.0 groups compared to the control group (P < 0.01). A significant decrease in adipokine levels was observed in all BEON-supplemented groups compared to the control group (P < 0.05). All BEON groups demonstrated a modulation of ferroptosis pathways, characterized by decreased heat shock protein 70 (HSP70) expression and upregulated expression of glutathione peroxidase 4 (GPX4) and cystine transporter solute carrier 7A11 (SLC7A11) in ovarian tissues (P < 0.01). Furthermore, DNA methyltransferase 1 (DNMT1) expression increased in a dose-dependent manner with increasing BEON supplementation. Histological analysis revealed an improvement in the architecture of the liver, uterine horns, and ovarian tissues in rabbits fed BEON. Integrating BEON at doses of 0.5-1.0 mL/kg diet significantly improved reproductive performance in stressed female rabbits. PCA and correlation analyses demonstrated a positive correlation between BEON supplementation and immune function, reproductive hormone levels, and antioxidant status, while a negative correlation was observed with MDA and adipokine concentrations in rabbit serum. In conclusion, BEON supplementation demonstrates promise as a sustainable nutritional strategy for the rabbit industry, particularly in mitigating the challenges posed by global warming.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。