Acute kidney injury (AKI) refers to clinical syndromes culminating in rapidly reduced renal function associated with inflammation and the demise of renal tubular epithelial cells. Current research aims to develop strategies which prevent tubular cell death. Here, based on the involvement of histone deacetylases (HDACs) in renal physiology and their established role in renal fibrosis, we investigated the mechanistic contributions of HDACs using a mouse model together with in vitro studies employing human renal epithelial cells. We found HDAC3 expression was upregulated in mouse renal tubules after ischemia/reperfusion and cisplatin treatment. Instructively, treatment with the HDAC3 selective inhibitor RGFP966 exerted potent protective effects, attenuates acute kidney injury in both in vivo and in vitro models. Moreover, RGFP966 was found to reduce inflammation and injury caused by cisplatin and hypoxia-reoxygenation in HK2 cells with transcriptome sequencing revealing that RGFP966 significantly inhibited the upregulation of the necroptosis initiator, RIPK1. Cellular thermal displacement assay and molecular docking demonstrated the physical binding of RGFP966 to HDCA3. In addition, RIPK1 knockdown cell assay signified that RGFP966 targeted RIPK1 and inhibited RIPK1 kinase activity. In summary, these findings established the efficacy of the HDAC3 inhibitor RGFP966 in treating AKI.
HDAC3 inhibition mitigates acute kidney injury by alleviating RIPK1-mediated programmed necrosis.
HDAC3 抑制剂通过减轻 RIPK1 介导的程序性坏死来减轻急性肾损伤
阅读:4
作者:Xie Manman, Hou Rui, Shan Runrun, Cheng Xinyu, Wu Pengcheng, Luo Xiufeng, Wei Yangyang, Gao Li, Liu Xiaoying, Chen Qi
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 16:1546950 |
| doi: | 10.3389/fphar.2025.1546950 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
