The Hunchback transcription factor determines interneuron molecular identity, morphology, and presynapse targeting in the Drosophila NB5-2 lineage.

Hunchback 转录因子决定果蝇 NB5-2 谱系中中间神经元的分子特性、形态和突触前靶向

阅读:4
作者:Pollington Heather Q, Doe Chris Q
Interneuron diversity within the central nervous system (CNS) is essential for proper circuit assembly. Functional interneurons must integrate multiple features, including combinatorial transcription factor (TF) expression, axon/dendrite morphology, and connectivity to properly specify interneuronal identity. Yet, how these different interneuron properties are coordinately regulated remains unclear. Here we used the Drosophila neural progenitor, NB5-2, known to generate late-born interneurons in a proprioceptive circuit, to determine if the early-born temporal transcription factor (TTF), Hunchback (Hb), specifies early-born interneuron identity, including molecular profile, axon/dendrite morphology, presynapse targeting, and behavior. We found that prolonged Hb expression in NB5-2 increases the number of neurons expressing early-born TFs (Nervy, Nkx6, and Dbx) at the expense of late-born TFs (Runt and Zfh2); thus, Hb is sufficient to promote interneuron molecular identity. Hb is also sufficient to transform late-born neuronal morphology to early-born neuronal morphology. Furthermore, prolonged Hb promotes the relocation of late-born neuronal presynapses to early-born neuronal presynapse neuropil locations, consistent with a change in interneuron connectivity. Finally, we found that prolonged Hb expression led to defects in proprioceptive behavior, consistent with a failure to properly specify late-born interneurons in the proprioceptive circuit. We conclude that the Hb TTF is sufficient to specify multiple aspects of early-born interneuron identity, as well as disrupt late-born proprioceptive neuron function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。