INTRODUCTION: Damage to peripheral nerves is common in major trauma cases, and current options for surgical repair are often not sufficient to promote satisfactory recovery of sensory and motor function. In this study we describe the development of a biomaterial scaffold with aligned nanofibrous topography and encapsulated neurotrophic factor, designed to direct and enhance axonal regeneration and so effectuate faster return of function. METHODS: Glial cell line-derived neurotrophic factor (GDNF) was loaded into aligned polycaprolactone (PCL) nanofibres using emulsion electrospinning, and the biomaterial was characterised alongside random and aligned PCL scaffolds without growth factor. RESULTS AND DISCUSSION: This fabrication route produced fine and uniform nanofibres with sustained release of GDNF over at least four weeks, and the aligned topography was able to orientate the growth of Schwann cells. Finally, the GDNF-loaded aligned nanofibrous scaffold significantly enhanced and directed the outgrowth of primary rat neurons cultured on its surface, demonstrating its promise as a pro-regenerative biomaterial for the surgical repair of nerve injury.
An emulsion electrospun nanofibrous scaffold loaded with glial cell line-derived neurotrophic factor for nerve regeneration.
一种负载胶质细胞系衍生神经营养因子的乳液静电纺丝纳米纤维支架,用于神经再生
阅读:6
作者:Gregory Holly N, Johnson Louis D V, Phillips James B
| 期刊: | Frontiers in Cell and Developmental Biology | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 16; 13:1567654 |
| doi: | 10.3389/fcell.2025.1567654 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
