TSPO deficiency exacerbates acute brain damage after intracerebral hemorrhage in male mice.

TSPO 缺乏会加剧雄性小鼠脑出血后的急性脑损伤

阅读:3
作者:Bonsack Frederick, Dasari Rajaneekar, Thomas Ashwin, Xu Hongyan, Sukumari-Ramesh Sangeetha
Intracerebral hemorrhage (ICH) is a stroke subtype with no effective treatment despite high morbidity and mortality rates. The delineation of the mechanisms of brain damage after ICH is critical to identifying novel molecular targets for therapeutic intervention. Apart from the augmented expression of 18 kDa translocator protein (TSPO) in microglia/macrophages post-ICH and its potential to track neuroinflammation, the precise function of TSPO after brain damage remains largely enigmatic. In the present study, we employed transgenic animal models, such as global and myeloid-specific conditional knockouts, to elucidate the functional role of TSPO in ICH-induced acute brain damage. Neurological deficits, neurodegeneration, and neuroinflammation were assessed at 3-days post-ICH in male and female mice. Male TSPO global knockout and conditional knockout exhibited enhanced neurobehavioral deficits with a concomitant increase in neurodegeneration and neuroinflammation compared to their respective controls. Interestingly, their female counterparts did not exhibit augmented brain damage compared to the respective controls. Mechanistically, studies employing RNA-Seq and subsequent functional validation demonstrate that TSPO could regulate brain cholesterol efflux, which could partly be responsible for enhanced brain damage in TSPO KO male mice after ICH, warranting further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。