Visceral adipose tissue-derived extracellular vesicles promote stress susceptibility in obese mice via miR-140-5p.

内脏脂肪组织来源的细胞外囊泡通过 miR-140-5p 促进肥胖小鼠的应激敏感性

阅读:5
作者:Wang Hao, Zhang Li, Yang Wan-Yue, Ji Xiao-Yi, Gao An-Qi, Wei Yi-Hong, Ding Xin, Kang Yue, Ding Jian-Hua, Fan Yi, Lu Ming, Hu Gang
Obesity increases the risk of depression. Evidence shows that peripheral inflammation, glycemic dysregulation, and hyperactivity within the hypothalamic-pituitary-adrenal axis are implicated in both obesity and depression. In this study we investigated the impact of visceral adipose tissue (VAT), a crucial characteristic of obesity, on stress susceptibility in obese mice. Age-matched mice were fed with chow diet (CD) or high-fat diet (HFD), respectively, for 12 weeks. CD mice were deprived of VAT and received transplantation of VAT from HFD mice (TransHFD) or CD mice (TransCD). Extracellular vesicles (EVs) were prepared from VAT of CD or HFD mice, and intravenously injected (100 μg, 4 times in 2 weeks) in naïve mice or injected into hippocampus (5 μg, 4 times in 2 weeks) through implanted bilateral cannula. Depression-like behaviors were assessed 14 days after transplantation. We showed that HFD mice exhibited significantly higher body weight gain and impaired insulin and glucose tolerance, accompanied by increased stress susceptibility. Transplantation of VAT or VAT-derived EVs from HFD mice caused synaptic damage and promoted stress susceptibility in recipient mice. Through inhibiting miRNA biogenesis in the VAT and miRNA sequencing analysis, we demonstrated that miR-140-5p was significantly upregulated in both VAT-EVs and hippocampus of HFD mice. Overexpression of hippocampal miR-140-5p in naïve mice not only facilitated acute stress-induced depression-like behaviors, but also decreased hippocampal CREB-BDNF signaling cascade and synaptic plasticity. Conversely, knockdown of miR-140-5p in the VAT, VAT-EVs or hippocampus of HFD mice protected against acute stress, reducing stress susceptibility that were mediated via CREB-BDNF pathway. In summary, VAT-EVs or the cargo miRNAs in obese mice promote synaptic damage and stress susceptibility, providing potential therapeutic targets for metabolism-related affective disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。