Several scientific studies have reported the opposing effects of silver nanoparticles (AgNPs) on angiogenesis, ranging from proangiogenic to anti-angiogenic. The widespread use of AgNPs in biomedical applications and the variability of their effects depending on concentration and exposure conditions highlight the need for further research into their impact on vascularization and endothelial cell behavior. This study aimed to investigate the potential influence of AgNPs on human umbilical vein endothelial cells (HUVECs) using a model incorporating a thin layer of an extracellular matrix (ECM). To this end, cytotoxicity was assessed, and endogenous nitric oxide and superoxide levels were measured. Additionally, the effects of AgNPs on HUVEC confluence and migration were evaluated. The expression levels of 43 proteins involved in angiogenesis were also analyzed. The results revealed that ECM enriched with AgNPs at a concentration of 0.5 mg/L enhanced cell coverage, promoted migration, and supported monolayer formation without inducing cytotoxicity.
Silver Nanoparticles at Low Concentrations Embedded in ECM Promote Endothelial Monolayer Formation and Cell Migration.
低浓度银纳米颗粒嵌入细胞外基质可促进内皮单层形成和细胞迁移
阅读:10
作者:Wójcik Barbara, Zawadzka Katarzyna, Hotowy Anna, Jóźwiak Maria, JusiÅska Klaudia, Wierzbicki Mateusz
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 16; 26(10):4761 |
| doi: | 10.3390/ijms26104761 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
