Long-term tissue engineered periosteum-mediated allograft healing is hindered due to persistent fibrosis and limited allograft remodeling.

由于持续的纤维化和有限的同种异体移植重塑,长期组织工程骨膜介导的同种异体移植愈合受到阻碍

阅读:5
作者:March Alyson, Castillo Aguirre Sandra H, Eliseev Roman, Choe Regine, Benoit Danielle S W
Decellularized bone allografts are used in approximately 1/3 of grafting procedures and are preferred in treating critical-size bone defects, as volumetric constraints limit autografts. However, allografts demonstrate high failure rates, with 60 % of allografts failing within 10-years post-implantation. Allograft failure is linked to poor graft integration, which directly results from lack of periosteum, which surrounds bone and is necessary for successful bone healing. Therefore, a tissue-engineered periosteum (TEP) is a promising approach to recapitulate the missing periosteum and promote allograft healing. We have systematically developed an enzymatically degradable poly(ethylene glycol) (PEG) hydrogel with encapsulated mouse mesenchymal stem cells and osteoprogenitor cells, recapitulating key periosteal paracrine signals and producing improvements in bone allograft healing. While successful TEP-mediated allograft healing has been observed, previous studies have been limited to short-term healing (up to 16-weeks), which has yet to enable the observation of TEP-modified allograft healing resolution. To this end, this study extended evaluation of allograft healing in a murine femur defect model up to 12-months post-implantation. TEP-modified allografts demonstrated improvements in key bone healing outcomes, including graft vascularization and bone callus formation, at early time points (up to 9-weeks post-implantation), but improvements in healing outcomes compared to unmodified allografts were lost after 4-months post-implantation. In addition, unmodified allografts displayed incomplete healing up to 12-months post-implantation, with significant fibrotic tissue, incomplete graft remodeling, and inferior biomechanical strength observed. Given these results, future TEP designs should support long-term healing and graft remodeling to promote resolution of TEP-mediated graft healing in a clinically relevant timeline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。